Senior Generative AI Data Scientist

fulltime
Expired

Employment Information

The position you were interested in has been filled or expired, but we invite you to explore other exciting job openings on our platform to find your next career opportunity.

DESCRIPTION

Are you passionate about Generative AI (GenAI) ? Do you want to help define the future of Go to Market (GTM) at AWS using generative AI? In this role, you will help our customers build and deploy GenAI enabled applications using Amazon Bedrock and SageMaker, fine tune and build Generative AI models, and help enterprise customers leverage these models to power end applications. You will engage with product owners to influence product direction and help our customers tap into new markets by utilizing GenAI along with AWS Services.

At Amazon, we’ve been investing deeply in artificial intelligence for over 20 years, and many of the capabilities customers experience in our products are driven by machine learning. Amazon.com’s recommendations engine is driven by machine learning (ML), as are the paths that optimize robotic picking routes in our fulfillment centers. Our supply chain, forecasting, and capacity planning are also informed by ML algorithms. Alexa is fueled by Natural Language Understanding and Automated Speech Recognition deep learning; as is Prime Air, and the computer vision technology in our new retail experience, Amazon Go. We have thousands of engineers at Amazon committed to machine learning and deep learning, and it’s a big part of our heritage.

AWS is looking for a Generative AI Data Scientist, who will be the Subject Matter Expert (SME) for helping customers in designing solutions that leverage our Generative AI services. As part of the Worldwide Specialist Solutions Architecture team, you will work closely with other Specialist Machine Learning Architects from various geographies to enable large-scale customer use cases and drive the adoption of Amazon Web Services for ML/AI platforms. You will interact with other Solution Architects in the field, providing guidance on their customer engagements, and you will develop white papers, blogs, reference implementations, and presentations to enable customers and partners to fully leverage ML/AI on Amazon Web Services. You will also create field enablement materials for the broader SA population, to help them understand how to integrate Amazon Web Services ML solutions into customer architectures. . You drive effective feedback gathering from customers, and you distill and translate that feedback into clear business and technical requirements for product and engineering teams to review. You may continue to sponsor the creation of new products and features from these requirements, working closely with product and engineering teams to minimize requirements drift from your customer’s needs.

You must have deep technical experience working with technologies related to multimodal, image generation, from model fine-tune to prompt engineering. A strong developing machine learning background is preferred, in addition to experience building application and architecture design. You will be familiar with the ecosystem of software vendors in the AI/ML space, and will leverage this knowledge to help Amazon Web Services customers in their selection process. Candidates must have great communication skills and be very technical, with the ability to impress Amazon Web Services customers at any level, from executive to developer. Previous experience with Amazon Web Services is desired but not required, provided you have experience building large scale solutions. You will get the opportunity to work directly with senior ML engineers and Data Scientists at customers, partners and Amazon Web Services service teams, influencing their roadmaps and driving innovation.

Key job responsibilities

  • Thought Leadership – Evangelize AWS GenAI services and share best practices through forums such as AWS blogs, white-papers, reference architectures and public-speaking events such as AWS Summit, AWS re:Invent, etc.
  • Partner with SAs, Sales, Business Development and the AI/ML Service teams to accelerate customer adoption and providing guidance on their customer engagements.
  • Act as a technical liaison between customers and the AWS SageMaker services teams to provide customer driven product improvement feedback.
  • Develop and support an AWS internal community of ML related subject matter experts worldwide. Create field enablement materials for the broader SA population, to help them understand how to integrate Amazon Web Services GenAI solutions into customer architectures.
  • Customer Advisor- Implement, and deploy state of the art machine learning algorithms under Gen AI. You will build prototypes, PoCs, and explore new solutions. You will interact closely with our customers and with the academic community.

We are open to hiring candidates to work out of one of the following locations:

New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA

BASIC QUALIFICATIONS

  • 4+ years of data scientist experience
  • Experience with statistical models e.g. multinomial logistic regression
  • Master's degree in a quantitative field such as statistics, mathematics, data science, business analytics, economics, finance, engineering, or computer science
  • 5+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience
  • Experience researching and applying large language and generative AI models
  • Strong background in Natural Language Processing, including experience with text representation, language modelling, sequence-to-sequence architectures, and semantic understanding
  • 3+ years of experience of technical architecture, design, deployment and operational level knowledge

PREFERRED QUALIFICATIONS

  • Experience managing data pipelines
  • Experience as a leader and mentor on a data science team
  • Active in the open source community, such as HuggingFace, StableDiffusion, etc
  • Large models pretrain/fine-tuning experience, familiar with distributed training
  • Customer facing skills to represent AWS well within the customer’s environment and drive discussions with senior personnel regarding trade-offs, best practices, and risk mitigation. Should be able to interact with Chief Data Science Officers, Chief Marketing Officers, Chief Risk Officers, Chief Technology Officers, and Chief Information Officers, as well as the people within their organizations.
  • Demonstrated ability to think strategically about business, product, and technical challenges in an enterprise environment. Track record of thought leadership and innovation around Machine Learning.
  • Experience with LangChain, LLAMAIndex, Foundation model tuning, Data Augmentation, and Performance Evalaution frameworks
  • Led a cloud initiative as an AWS customer or consulting with a customer in their own IT transformation.

Pursuant to the San Francisco Fair Chance Ordinance, we will consider for employment qualified applicants with arrest and conviction records.

Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $127,300/year in our lowest geographic market up to $247,600/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit https://www.aboutamazon.com/workplace/employee-benefits. Applicants should apply via our internal or external career site.

joxBox

Join our newsletter to get monthly updates on data science jobs.

joxBox